按提交时间
按主题分类
按作者
按机构
  • Growth after the streaming instability: The radial distance dependence of the planetary growth

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Streaming instability is hypothesized to be triggered at particular protoplanetary disk locations where the volume density of the solid particles is enriched comparable to that of the gas. A ring of planetesimals thus forms when this condition is fulfilled locally. These planetesimals collide with each other and accrete inward drifting pebbles from the outer disk to further increase masses. We investigate the growth of the planetesimals that form in a ring-belt at various disk radii. Their initial mass distributions are calculated based on the formula summarized from the streaming instability simulations. We simulate the subsequent dynamical evolution of the planetesimals with a protoplanetary disk model based either on the minimum mass solar nebula (MMSN) or on the Toomre stability criterion. For the MMSN model, both pebble accretion and planetesimal accretion are efficient at a close-in orbit of $0.3$ AU, resulting in the emergence of several super-Earth mass planets after $1$ Myr. For comparison, only the most massive planetesimals undergo substantial mass growth when they are born at $r{=}3$ AU, while the planetesimals at $r{=}30$ AU experience little or no growth. On the other hand, in the denser Toomre disk, the most massive forming planets can reach Earth mass at $t{=}1$ Myr and reach a mass between that of Neptune and that of Saturn within $3$ Myr at $30$ AU and $100$ AU. Both the pebble and planetesimal accretion rate decrease with disk radial distance. Nevertheless, planetesimal accretion is less pronounced than pebble accretion at more distant disk regions. Taken together, the planets acquire higher masses when the disk has a higher gas density, a higher pebble flux, and/or a lower Stokes number of pebbles.

  • Early Solar System instability triggered by dispersal of the gaseous disk

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Solar System's orbital structure is thought to have been sculpted by an episode of dynamical instability among the giant planets. However, the instability trigger and timing have not been clearly established. Hydrodynamical modeling has shown that while the Sun's gaseous protoplanetary disk was present the giant planets migrated into a compact orbital configuration in a chain of resonances. Here we use dynamical simulations to show that the giant planets' instability was likely triggered by the dispersal of the gaseous disk. As the disk evaporated from the inside-out, its inner edge swept successively across and dynamically perturbed each planet's orbit in turn. The associated orbital shift caused a dynamical compression of the exterior part of the system, ultimately triggering instability. The final orbits of our simulated systems match those of the Solar System for a viable range of astrophysical parameters. The giant planet instability therefore took place as the gaseous disk dissipated, constrained by astronomical observations to be a few to ten million years after the birth of the Solar System. Terrestrial planet formation would not complete until after such an early giant planet instability; the growing terrestrial planets may even have been sculpted by its perturbations, explaining the small mass of Mars relative to Earth.

  • Planetesimal growth in evolving protoplanetary disks: constraints from the pebble supply

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In the core accretion model, planetesimals grow by mutual collisions and engulfing millimeter to centimeter particles, i.e., pebbles. Pebble accretion can significantly increase the accretion efficiency and help explain the presence of planets on wide orbits. However, the pebble supply is typically parameterized as a coherent pebble mass flux, sometimes being constant in space and time. Here we solve the dust advection and diffusion within viciously evolving protoplanetary disks to determine the pebble supply self-consistently. The pebbles are then accreted by planetesimals interacting with the gas disk via gas drags and gravitational torques. The pebble supply is variable with space and decays with time quickly with a pebble flux below 10 $M_\oplus$/Myr after 1 Myr in our models. As a result, only when massive planetesimals ($>$ 0.01 $M_\oplus$) are luckily produced by the streaming instability or the disk has low viscosity ($\alpha \sim 0.0001$), can the herd of planetesimals grows over Mars mass within 2 Myr. By then, planetesimals only capture pebbles about 50 times their mass and as little as 10 times beyond 20 au due to limited pebble supply. Further studies considering multiple dust species in various disk conditions are warranted to fully assess the realistic pebble supply and its influence on planetesimal growth.

  • Planetesimal growth in evolving protoplanetary disks: constraints from the pebble supply

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In the core accretion model, planetesimals grow by mutual collisions and engulfing millimeter to centimeter particles, i.e., pebbles. Pebble accretion can significantly increase the accretion efficiency and help explain the presence of planets on wide orbits. However, the pebble supply is typically parameterized as a coherent pebble mass flux, sometimes being constant in space and time. Here we solve the dust advection and diffusion within viciously evolving protoplanetary disks to determine the pebble supply self-consistently. The pebbles are then accreted by planetesimals interacting with the gas disk via gas drags and gravitational torques. The pebble supply is variable with space and decays with time quickly with a pebble flux below 10 $M_\oplus$/Myr after 1 Myr in our models. As a result, only when massive planetesimals ($>$ 0.01 $M_\oplus$) are luckily produced by the streaming instability or the disk has low viscosity ($\alpha \sim 0.0001$), can the herd of planetesimals grows over Mars mass within 2 Myr. By then, planetesimals only capture pebbles about 50 times their mass and as little as 10 times beyond 20 au due to limited pebble supply. Further studies considering multiple dust species in various disk conditions are warranted to fully assess the realistic pebble supply and its influence on planetesimal growth.

  • Grain Growth in the Dust Ring with Crescent around Very Low Mass Star ZZ Tau IRS with JVLA

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The azimuthal asymmetries of dust rings in protoplanetary disks such as a crescent around young stars are often interpreted as dust traps, and thus as ideal locations for planetesimal and planet formations. Whether such dust traps effectively promote planetesimal formation in disks around very-low-mass stars (VLM; a mass of $\lesssim$0.2~$M_\odot$) is debatable, as the dynamical and grain growth timescales in such systems are long. To investigate grain growth in such systems, we studied the dust ring with crescent around the VLM star ZZ~Tau~IRS using the Karl G. Jansky Very Large Array (JVLA) at centimeter wavelengths. Significant signals were detected around ZZ~Tau~IRS. To estimate the maximum grain size ($a_{\rm max}$) in the crescent, we compared the observed spectral energy distribution (SED) with SEDs for various $a_{\rm max}$ values predicted by radiative transfer calculations. We found $a_{\rm max} \gtrsim$~1~mm and $\lesssim$~60~$\mu$m in the crescent and ring, respectively, though our modeling efforts rely on uncertain dust properties. Our results suggest that grain growth occurred in the ZZ~Tau~IRS disk, relative to sub-micron-sized interstellar medium. Planet formation in crescent with mm-sized pebbles might proceed more efficiently than in other regions with sub-millimeter-sized pebbles via pebble accretion scenarios.

  • Natural separation of two primordial planetary reservoirs in an expanding solar protoplanetary disk

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Meteorites display an isotopic composition dichotomy between non-carbonaceous (NC) and carbonaceous (CC) groups, indicating that planetesimal formation in the solar protoplanetary disk occurred in two distinct reservoirs. The prevailing view is that a rapidly formed Jupiter acted as a barrier between these reservoirs. We show a fundamental inconsistency in this model: if Jupiter is an efficient blocker of drifting pebbles, then the interior NC reservoir is depleted by radial drift within a few hundred thousand years. If Jupiter lets material pass it, then the two reservoirs will be mixed. Instead, we demonstrate that the arrival of the CC pebbles in the inner disk is delayed for several million years by the viscous expansion of the protoplanetary disk. Our results support that Jupiter formed in the outer disk (>10 AU) and allowed a considerable amount of CC material to pass it and become accreted by the terrestrial planets.

  • Planet Formation Theory in the Era of ALMA and Kepler: from Pebbles to Exoplanets

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Our understanding of planet formation has been rapidly evolving in recent years. The classical planet formation theory, developed when the only known planetary system was our own Solar System, has been revised to account for the observed diversity of the exoplanetary systems. At the same time, the increasing observational capabilities of the young stars and their surrounding disks bring new constraints on the planet formation process. In this chapter, we summarize the new information derived from the exoplanets population and the circumstellar disks observations. We present the new developments in planet formation theory, from dust evolution to the growth of planetary cores by accretion of planetesimals, pebbles, and gas. We review the state-of-the-art models for the formation of diverse planetary systems, including the population synthesis approach which is necessary to compare theoretical model outcomes to the exoplanet population. We emphasize that the planet formation process may not be spatially uniform in the disk and there are preferential locations for the formation of planetesimals and planets. Outside of these locations, a significant fraction of solids is not growing past the pebble-sizes. The reservoir of pebbles plays an important role in the growth of planetary cores in the pebble accretion process. The timescale of the emergence of massive planetary cores is an important aspect of the present models and it is likely that the cores within one disk form at different times. In addition, there is growing evidence that the first planetary cores start forming early, during the circumstellar disk buildup process.

  • TOI-530b: A giant planet transiting an M dwarf detected by TESS

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report the discovery of TOI-530b, a transiting giant planet around an M0.5V dwarf, delivered by the Transiting Exoplanet Survey Satellite (TESS). The host star is located at a distance of $147.7\pm0.6$ pc with a radius of $R_{\ast}=0.54\pm0.03\ R_{\odot}$ and a mass of $M_{\ast}=0.53\pm0.02M_{\odot}$. We verify the planetary nature of the transit signals by combining ground-based multi-wavelength photometry, high resolution spectroscopy from SPIRou as well as high-angular-resolution imaging. With $V=15.4$ mag, TOI-530b is orbiting one of the faintest stars accessible by ground-based spectroscopy. Our model reveals that TOI-530b has a radius of $0.83\pm0.05\ R_{J}$ and a mass of $0.4\pm0.1\ M_{J}$ on a 6.39-d orbit. TOI-530b is the sixth transiting giant planet hosted by an M-type star, which is predicted to be infrequent according to core accretion theory, making it a valuable object to further study the formation and migration history of similar planets. We discuss the potential formation channel of such systems.

  • ET White Paper: To Find the First Earth 2.0

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We propose to develop a wide-field and ultra-high-precision photometric survey mission, temporarily named "Earth 2.0 (ET)". This mission is designed to measure, for the first time, the occurrence rate and the orbital distributions of Earth-sized planets. ET consists of seven 30cm telescopes, to be launched to the Earth-Sun's L2 point. Six of these are transit telescopes with a field of view of 500 square degrees. Staring in the direction that encompasses the original Kepler field for four continuous years, this monitoring will return tens of thousands of transiting planets, including the elusive Earth twins orbiting solar-type stars. The seventh telescope is a 30cm microlensing telescope that will monitor an area of 4 square degrees toward the galactic bulge. This, combined with simultaneous ground-based KMTNet observations, will measure masses for hundreds of long-period and free-floating planets. Together, the transit and the microlensing telescopes will revolutionize our understandings of terrestrial planets across a large swath of orbital distances and free space. In addition, the survey data will also facilitate studies in the fields of asteroseismology, Galactic archeology, time-domain sciences, and black holes in binaries.